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Three-dimensional contact problems for an elastic layer of thickness h lying on a rigid 

base without friction are considered. Friction forces between the stamp and the layer are 

assumed abmnt. 

The case when the region of contact of the stamp with the layer is an infinite strip of 

width 20 is studied. 

The base of the stamp is arbitrary. The whole analysis applies to the case when the 

relative thickness of the layer A = h/o is relatively small. 

The method of [l] is perfected and developed further, and examples are given. 

1. Formulation of the contact problem for an elastic layer. The problem of the effect 

of a stamp in the shape of an infinite strip on an elastic layer of slight thickness reduces 

to the solution of the system of Lam4 equations 

(1.1) 

(1-22~) Au + 2 = 0, (1 - 2~) Au + $ = 0, (I-22y)Aw+ 2 = 0 

with the boundary conditions 

for I = h 

-c *z = G(au/a2-+-aqax)=o 
~,,=qav/a2+aqa~)=o 

(-M<GY<so) 

a,=2Graw/a~+6y/(1-22y)1=0 
(--<Gy<=) (1.2) 

(IYI>%IzI<=J) 

for 2 = 0 
w = - f (x:, y) (IY16% I~l<m) 

z -~((d~~a~+a~~/a~;)= 0 XL - (--W<GY<=J) 
z,,=~(av~a~+a~~a~)=O (--<GY<M) 

w=o (-=<x, Y<M) 

(1.3) 
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The displacements decrease as 1 y 1 + 00. 

Here A is the three-dimensional Laplace operator, v is the Poisson coefficient, G is 

the shear modulus, f (r, y) is the function of settling of points of the surface of the 

elastic layer under the stamp, and is even in y. 

We seek to determine the contact stresses 

due to the interaction between the forces acting on the stamp, and the indentation in the 

stamp. 

Let us represent the function f (x, y) in the form 

f (2, y) = f+ (2, $/I + f- (5 !I> (1.5) 

where f+ (2, Y> is a function even in z, and f- (2, 9) is odd in X. Consequently, 

problem splits into two: ‘even’ and ‘odd’ in IC. 

Below we shall consider only the case oven in r; the odd case is completely 

analogous. Henceforth we shall omit the + symbol from the function f+ (r, !4) l 

Let ua seek the solution of (1.1) under the conditions (1.2) and (1.3) as 

Let us substitute (1.6) into (1.1) and let us perform all the differential operations 

under the integral sign ; equating the integrands to zero we obtain the system 

(~-22v)~~~+e~-~u,~-(~-2v~a2~=o (1.7) 

fl-2v)Li~~+~,‘-~u,‘-(1-2v)a~W=O (8 = V$/’ + W*‘) 

Analogously, from (1.2) and (1.3) we obtain the following boundary conditions 

for 2 = h 

U,‘--CM = 0 (-cQ<y<oo), I/;‘+w,‘=o (-m<y<cQ) 

(1-2v)w,‘+vG-avu=o (]Yi>Q), W=---P(a,y) (ig[\(a) (1.8) 

for 2 = 0 

U,‘--aw = 0 (---<Y<-oO)~ v+~~‘=o (---<y<o4 (1.9) 

Iv=0 (-oo<y<oo) 
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The functions U, V and I decrease as 1 ZJ 1 - 00. 

Here F (u, y) is the F ourier cosine transform of the function f (x, y), i.e. 

~(~,~)=~~F(a,y)c~sa~~a. F(a,y)=~i(r,y)cosa~d~ (1.10) 

0 0 

Furthermore, let us assume that the function F (a, y) satisfies the following condi- 

tions : 

(1) For any fixed 0 < a < oo it has a continuous first derivative in y E [- a, a] 

with the exception of a finite number of points of discontinuity of the first kind ; 

(2) For any fixed 0 < a < 00 it has a finite number of points of discontinuity of 

the second kind for the second derivative with y E [- a, a]; 

(3) For any fixed 0 < r~ < 00 it is strictly monotone in y for 0 < 1 y 1 < a. 

If the function F (a, y) is not strictly monotone in y, then a strictly monotone function 

‘p (a, y), may always be selected such that F1,’ (a, y) + ‘pr,’ (a, y) > 0 or Fv’ (a, 

(a, and F (a, y) represented as the combination of two strictly monotone 

functions. 

Let a strictly monotone function F* (a,~) be a continaation of the function F (a, y) 

into the interval a < ]y] < 00 while retaining all the other properties of the function F (a,~). 

Let us make the following change of variables in equations (1.7) and the boundary 

conditions (1.8) and (1.9) remembering that the problem is even in y 

‘1= =p-,(IyI), 6=-$- (OdIYI<~* Odz<h) (1.11) 

We shall require the following conditions to be fulfilled : 

(1) The fnnction 11 must be strictly monotone and decreasing for 0 < ]y] < 00 i.e. 

rl’ (IYI) < 0. 

(2) The function 7 has a continuous first derivative in ?J E [-- cc, co], with the 

exception of a finite number of points of disccntinuity of the first kind, and has a finite 

number of points of diecontinnity of the second kind for the second derivative with 

y E [- CQ, 001. 

(3) The function 7 (y) takes on the following values: 

Here C, and C, are positive constants and C, < DO, while C, may assume infinite 

value. Let us take the function o (1 g 1) as 
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0 (I Y I) = F (a, a) -F (a, Y) 
F,,’ (at a) (a - I Y I) for O<Iyl<a 

(1.12) 

w (1 Y 1) = 
F 6% a) - F* 0% y) 

F?,*‘(% a) (a - 1 Y I) 
for a<,<lul<- 

Then it is easy to show on the basis of the properties of the functions P (a, II) and 

P* (a, ?/)I that rl = rl (t Y 1) satisfies all the properties listed above. At the same time 

the function 

F (a, 14 = bo (a) + bl w rl (1.13) 

for all0 < lyf < u,whera 

b, = F (a, a), b, = - hF,,’ (a, a) (1.14) 

The back eubstitntion of fy[ and t with 7~ and 5 ee~ptotic for amall h may be 

uniquely represented as 

larl = a-hqf..., 2= - h6 (1.15) 

Having made the substitutiona (1.11) in (l.?), in the boundary conditions (1.81, (1.91, 

neglecting terms of order h and A’ in tbs obtained relationships and patting 1 / h = oo 

(h = h / a), we obtain the following system of differential equations with the boundary 

conditions 

DYJ*= 0 , f (I_ 2,q ~“v* + en* = 0, (I- 2~) IlaW* + er*’ = 0 (1.16) 

for[=- 1 

UC*‘= 0 (-oe<rf<co), V,*‘+W,*’ = 0 (-oo<~<oo) (1.17) 

(L--2v)w,*‘+ve*=o(-oo<q<o), w*=-~Ib*(~)+~~(~)~l(o~~<oo) 

for c= 0 

UC*’ = 0 (-oo<?j<oo) V,*‘fWlt*‘=’ (-=‘<q<‘+ (1,x8} 

w* =o (--<Tj<oo) 

The functions II*, V+, FYI” decrease as 19 1 -+ 00. 

At the same time the function b, -j- b,q is continued analytically with ester&on of 

the coordinate 7 into the domain h% (0) < 9 < 00. 

Now it is easy to see that the considered problem, when the thicktteoo of the lay= 

is taken into account is split into the following two problems. 

1. The determination of the solution of the first of the differential squatfw (1.16) 

taking into account only the first of the boundary conditions (1.17) and (1.18) aud tko 

condition that the function U* decreases at infinity; it is known, that the aohion of t&is 

problem is identically equal to zero. 
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2. The solution of the system consisting of the second and third differential equations 

of (1.16) taking into account the remaining boundary conditions of (1.17) and (1.18) and the 

conditions that the functions V* and W* decrease at infinity. 

The last problem is a contact plane problem on the effect of a semi-infinite flat in- 

clined stamp on an elastic strip of unit thickness. This problem may be reduced [2] by the 

methods of operational calculus to the solution of the following integral equation in terms 

of the distribution function of contact pressures Q* (a, z): 

co 

oSQ'(~1:~)K(2.--)d~=~~[bo(l)+bl(a)til @,<rl<=) (1.19) 

Evidently, the function Q* (a, q), is connected with g (x, y) by meaus of the rela- 

tionship* 

00 co 

q (2, Y) = $fj Q* (a, rl) cos ca da 2-5 $ s 
Q (a, y) cos a xda (1.21) 

0 0 

Thus, the asymptotic solution of the considered problem is for small values of the 

parameter X, determined by (1.21) if the solution of (1.19) is known. The connection 

between the stress acting in each cross-section of the stamp and its settling is deter- 

mined from the formula 

p @) = f 4 (ZL’I Y)& (1.22) 
---a 

The solution of the problem vanishing at y = c a will when s is fixed evidently 

exist if 

lim Va2 
u+4a 

-y2yQ(a, y)cosaxda=O 
0 

(1.23) 

This relationship imposes definite constraints on the function f (x, y) which is of 

the form fl.lO).** 

If the function f (x, y} is periodic with the period of 21, then the Fourier integral (1.10) 

transforms into the Fourier series 

* Formula (1.21) was obtained by an appropriate transformation of the Huhn’s law formula 

for ox. 

l * All the presented results may be obtained by means of an asymptotic solution of the 

integral equation of the considered contact problem (see (1.29)) for small h as has 

been done in [I], say ; i.e. its asymptotic solution for small X is given by formula 

(1.21). 
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f(& Y)= x fn(YbO~~ 
n=o 
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(1.24) 

and the asymptotic solution of the problem for small A (1.21) evidently becomes 

(1.251 

u=+ 

If the function f (x, yl is degenerate, i.e. 

f (3, ?I> = i fn (Y) 4% t2) (1.261 

n=o 

then it can be shown that the solution of the problem will also be degenerate and re- 

presentable as 
N 

(1.271 

where N is any natural number, or infinity. 

In (1.25) and (1.27) the function qn (I./) = qn (q,,),where qn (q$ is the solution of 

the integral equation (1.19) with the right hand aide 

(1.281 

and where rl is constructed by means of (1.111 and (1.121 while the con&ants bau and bin 

are determined from (1.41.* 

It was mentioned above that the function f (x, yl is assamed even in y, however, 

the solution may be obtained even for the odd function f (x, yl which is in y by atilizing 

the example given below. 

It is known (see [3], say), that the solution of the system of Lams’ equations (1.11 

which the boundary conditions (1.2) and (1.3) can be reduced by the methods of operational 

calculus to determination of the contact stresses q (r, y) from the integral equation 

am 

s s q (s, t) K (R /h) ds dt = 2nhXf (2, y) 
--a -cc 

K ($1 = ~L(u)J,(uR,h)de. 

(1.291 

R = J(s - z)” + (t - y)” 
0 

l It is assumed that the functions fn (y) are strictly monotone in y for all 0 < 1 y I< a 
and for any natnral n, and that they also satisfy other conditions formulated above for the 

function F (a, y). If some of the f,,(y) are not strictly monotone, it may always be re- 

presented as a combination of two strictly monotone functions. 
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Let us suppose that we require to find the solution of the integral equation 

where f (x, y) is an odd function of y. Moreover, let 

g* (4 Y) + c (4 (1.31) 

be the primitive of the function g (x, y) in y. 

Let us find the solution of (1.29) when f (x, y) is equal to (1.31). This solution must 

vanish for y - f a, and this will yield a condition for the unique selection of c (x). Let us 

differentiate both aides of (1.29) with respect to y. where f (x, y) has the form (1.31). 

Afterwards, taking into account that 

K,,’ (R J h) = - Kt’ (R I h) (1.32) 

let us transfer the derivative from the kernel to the function q (I, t) by integration by parts. 

We now see without difficulty that the solution of (1.30) is of the form 

P (s, 4 = Qt’ (s, 4 (1.33) 

where q (I, 1) is the solution of the first integral equation (1.29) with f (z, y) equal to 

g* (5, !I) + c (z), and, which vanishes for y = f a.* 

The relation between the moment present at every cross-section of the stamp and its 

mottling is determined by the formula 

M(Z) = f. S(ZI Y)Y@ (1.34) 
---a 

Let us note that the force P (x) and the moment M (r) acting at each section of the 

stamp may also be determined by means of the relationships 121 

a a 

p (4 = J Qo (Y> f (27 Y> dY7 
--a 

Mb-9 = J Pl(Y)f(zY Y)dY (1.35) 

--a 

where qO (y) and p1 (y) are, respectively, the ablutions for the case f (2, &J) G 1 (flat 

stamp) and 6 (z, y) s y (inclined stamp). 

* If the asymptotic solution of the firat integral equation (1.29) is known for small values 

of the parameter & then by (1.33) we shall obviously obtain also the asymptotic soln- 
tion of (1.30). 
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2. Solution of the integral equation (1.19). Let us consider .a more general integral 

equation 
a, 

s 
Q, (r) K (r - q) dr = nxrjn (O<rl<=J) (2.1) 

0 

The closed aolution of this equation may evidently be found directly by the Wisner- 

Hopf method, as it wart done in [4]. A owever, it should be noted that a more dfrect way 

exists for the determination of the eolution of the integral equation (2.1) for any n, which 

follows. 

Let the solution of the aaxiliary integral equation 

00 

s 
Q(e, z)K(z-q)dz=nxe 

ille 
(Od11<m) 

be known. 
0 

(2.2) 

Differentiating this solution n times with respect to e and subsequently putting 

e = 0 we shall evidently after dividing the result by I”, obtain the solution of (2.1). 

The solution of the integral equations (2.1) may also be obtained by still another 

method, which is somewhat more complicated than the preceding, but ia of considerable 

theoretical intereet. Namely, let us put e = 0, in the eolotion of (2.2); then evidently 

we obtain the solution Q. (T) of (2.1) for n = 0. 

Let us introduce the function 
+ 

s Qo(t)dt = Q?(z) (2.3) 
II 

Then, let us put Q. (T) = Q1”’ (r)in (2.1) f or n = 0 and let us transfer the derivative 

into (x- II) by integration by parts. Afterwards, noting that K,’ (t-q)= -K,’ (T - q), 

and integrating the obtained relationship with respect to 7 between the limits 0 and f, we 

shall obtain the following integral equation for determination of QtO (T): 

00 00 

s 
QI’ (t) K (r - rlhdr = fix PI + 4 ( s 

c = Ql” (4 K (7) dt 
1 

(2.4) 

0 0 

The term outside the integral, which is obtafned in transferring the derivative 

vanishes since the function K (t) decreases hy exponential* as ItI + 00 while QIo (0) = 0. 

ft obviously follows from (2.4) that the solution of (2.1) for n P 1 is 

QI (4 = Q,: (~1 - cQo (T) 

Now, we shall determine the constant c in (2.5) ; to do this, let us consider the 

auxiliary integral equation 

(2.5) 

l The exponential decrease of the kernel K (t) at infinity, aa well as some other proper- 
ties, will be shown below. 
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00 

s v(s)K(f-q)dr=nXq ( --oo<rl<=) 
-co (2.6) 

together with the integral equation (2.1) for n = 1, 

It is easy to show that the solution of the integral equation (2.1) with n = 1 and 

T+oo tenda to the solotion of the integral equation (2.6). i.e. 

lim[QI(z)-uU41=0 for z-+m (2.7) 

This condition may just be used to determine the form of the constant c. The solution 

of (2.6) ia easily foond by applying the Fourier transform, and is 

a, co 

v(q)=+- 5 rK* (.t-q)dt cos tudu 

-CO 

Repeating the above-mentioned system of procedures m times, we obtain the 

of the integral equation (2.1) for n I m. 

(2.8) 

solution 

Now, let tm determine the solution of (2.2). In order to obtain a solution which is 

practical, it is necessary to approximate the kernel K (t) by a simpler expression. To do 

thin, let us consider the properties of the functions L (u) and K (t) in more detail. 

It ia easily u~een that the fnnction L (a) haa the following properties : 

(2.9) 

L(u)+Au+O(u4) for u-0, (A=‘/,); L (u) -+ 1 i 0 (e-8”) for u ---t ;r 

and it can alao be shown that [2] 

K(t)--ln(tI+B for t-+0 (B = const) (2.10) 

Moreover let us ahow that for large t the function K (t) decreases exponentially. To 

do this, we shall consider the auxiliary integral 

J (t) = 
s 

g4_ $2 dz 

r z 
(2.11) 

where a = u -I- iv, the function f, (z) is given by the second relation of (1.20). the 

contour of integration r passes along the real axis+ and the semi-circle of radius R in the 

upper half-plane. Let us represent the function L (z)/z as the ratio of two even functions 

entire in 2, namely 

44 I 2 = P(z) I Q(z) (2.12) 

l From the second relationship (1.20) it is easily Been that the function L (z) has no poles 

on the real axis. 
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Now, letting R tend to infinity in (2.11), taking account of the second property of 

(2.9) and using the theory of residues, we obtain 

O” pm K(t) =$zJ(1) = ni x 
k=l Q' Kk) exp (“b) (2.13) 

Here <k are the roots of the entire function Q (I) ; and Q (z) has no multiple roots. It 
follows from (2.13) that 

(X = inf 1 lm & I) (2.14) 

It can also be shown that for 0 < 1 t I< 00 the kernel K (t) is a function, which is 

continuous and continuously differentiable any number of times. 

Now, let us approximate the function L (u), in agreement with (2.9). by the expression 

(2.15) 

As can be shown htire, that all the fundamental properties of the function K (t) men- 

tioned above are still satisfied. In the problem under consideration, the error in the ap- 

proximation (2.15) does not exceed 12% for D = 1. 

Omitting the explanation of the application of the Wiener-Bopf method to the integral 

equation (2.2) when the approximation (2.15) is used, let us give the final result 

~ vi?-iiE eeDQ 
Q (8, 9) = K$j- erf V-P -i ie) q + 1/~)-- x (K (4 = 

(ES + D’)“S 

(aa + E) 1 
(2.16) 

From (2.16), as shown above, we obtain the solution of (2.1) for n = 0.1. Analogous 

solutions may be obtained by utilising the other example given above; it should only be 

mentioned here that the solution of (2.6) for the considered problem is 

~(11) =x?lA (2.17) 

In conclusion, we shall quote the solution of (1.19), which is 

- 
Q' (a, 9) = -$ {PO (a) + h (a) ql erf V/oq + 

+ [ho(a) + bl (9) ($&j +-i& - -$$)I +$-emDn} (2.18) 

3. Solution of the contact problem under consideration. Substituting (2.18) into (1.21) 

and utilizing relationships (1.11). (1.12) and (1.14) we obtain the asymptotic solution of 

the considered problem for small x in form 
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Solutions of the type (1.25) and (1.27) may be represented analogously. The condition 

(1.23) that the solution (3.1) vanish for y = f a is evidently 

F (a, a) + ($$ - 2&) hF,’ 6% a) = o (3.2) 

Snbstituting (3.2) into (3.1). we shall obtain the solution of the considered problem 

vanishing for y = f a, as 

q (x, y) = -$-$ r {F (cl, y) erf (D F ‘a,~‘~aF~;’ ‘) )I”-- 

’ hFv’ (a, a) 

-( SCD 
[F (u, a)_Fn(u, y)J)“‘exp (-D 

u ’ 

F(a 4--F@. Y) iF,,(a, a) )}Co~u~~~ 
Now, let f (5, y) = g* (X, y) + C (x)- L e us determine the function c (x-1 from t 

the condition (3.2) that the solution becomes zero on the edges of the stamp 

c(a) = - G* (u, a) - (-$ - &) hC,*' (u, a) 

Here c (a) and G* (a, y) are cosine Fourier transforms of the functions c (x) and 

g* fx, y). Substituting the transform F (a, y) = G* (a, II) + c (u) into (3.3) and then 

differentiating both sides with respect to y, we shall obtain, in conformity with (1.33), the 

asymptotic solution for small A of our problem for the case of the fnnction g (x, y) odd in 

y, of the displacement of the surface of the elastic layer under the stamp: 

p (x, y) = & r G (a, y) [ erf (D G* (a$;~*;;y y, )” + 
IJ (3.5) 

where G (u, y) is the cosine Fourier transform of the function g (2, y). 

Let us now consider the case when the Fonrier cosine-transform F (U, g) of the 

function f (r, y) is not strictly monotone in y. In this case, as remarked in section 1, it 

is necessary to represent the function F (a, y) as 

F (a, y) = cp (a, Y) - $ (a, Y) (3.6) 

where the functions Cp (U, y) and 9 (U, y) are strictly monotone in y and satisfy other 

properties mentioned in section 1. Then the asymptotic solation of onr problem may be 

presented for small h, as the combination 

(3.7) 

where Qt (4 Y) and Qz (G Y) are determined from (3.1) in which F (a, V) is eqaal to 

J, (a, y) and 9 (a, y) respectively. 
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For the particular case off (z, y) E f ( ), h h 2 w ic as will be shown later plays an 

important part, the solution (3.7) becomes 

where P (u) is the cosine Fourier transform of the fanction f(x). 

The force and the moment acting in a section of the stamp may be determined by 

formulas (1.221, (1.34) or (1.35). After simple manipulations the formnla (1.35) for the force 

may be represented as 

where Q. (a, g) is an expression contained in square brackets in (3.8). in which, not un- 

expectedly, ‘p (~1, Y) is replaced by the function F (a, y). 

It is easy to see from (3.7) and (3.8) that the asymptotic solution of the considered 

problem for small A is not determined uniquely, namely, some arbitrariness exists in the 

selection of the function q~ (u, y), which possesses only the properties mentioned in 

section 1. Evidently, the solutions obtained are asymptotically equivalent for small A, 

however, the range of their practical utiIization in X apparently depends on the success in 

selecting the function ‘p (a, y), The exact limits of the practical utilization of the ob- 

tained solution may be learned only by constructing the next term of the asymptotic 

solution of the considered problem for small values of X. Here this question will not be 

considered ; however, specific computations have ehown that all the obtained solutions 

may be used confidently at least in the range 0 < li <r/a. 

Here, we shall select the function ‘p (a, y) by its suitability. Namely: (1) if the 

function F (a, y) is not strictly monotone in 1~1, then snch function Cp (a, Yf should- be 

chosen,whichis analytic in y for 04 Iy\ < a, and which does not carry its asymptotically 

small singularities for small X into the solution of the considered problem, (21 if the function 

F (u, y) is strictly monotone on 0 < [yl @ then the function CP (Y, a) identically equal to 

xero should be chosen, (3) if the function F (a, y} z F (c&which corresponds to a stamp 

plane in y, then the function cp (CZ, y) ib (3.8) is arbitrary, however, if F (a) is combined 

with the function*G (a, y),odd in y, then such function g, (a, y) should be chosen, in (3.8) 

which is equal to G* (u, y), 

Let us consider the plane problem, namely the case when f (2, g) EZ f (y). Evidently 

all the formulas obtained earlier may be used here if we remember that the cosine Fourier 

transform for the function f (z, y) becomes 

(3.10) 

l An analogous fact holds for the general case of (3.1). 
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where6 (u) is the Dirac delta function, and if we utilize the known properties of the 

function 6 (a). For example, (3.1) may be represented as 

The remaining formulas (3.3), (3.5) and (3.8) assume an analogous form. 

It is easy to note, that the solution (3.1) within the line of contact [-a, o] tends 

rapidly to the correeponding degenerate solution defined by the formula* 

If the function f (y) has angular points y = bi within the line of contact, then from 

(3.11) and (3.12) it follows that the solution of the problem q (y) will behave as Iy - bit 

at these points. 

If the function g (y) has discontinuities of the first kind at the points y = ci within 

the line of contact, then it may similarly be established that the solution of the problem 

p (y) will behave as sign (y - Ci) at these points. 

However, it is known [5], that in the caee of an elastic half-space the solution of 

the contact problem has logarithmic singularities, at the angular points of the function 

f (y) and removable poles at the points of discontinuity of the first kind of the function 

g (y). It can be proved that such singularities sre also retained in the considered case of 

the contact problem for e layer. Hence, we find that the obtained solutions misbehave at 

the angular points of the function f (y) and et the points of discontinuity of the first kind of 

the function g (y). This however, has no practical effect on the accuracy of the solution 

of the considered problem, for sufficiently smell x on the intervals between the mentioned 

points on the segment Y E [--a, a] rend on the iutegral characteristics of the solution, 

i.e. the force and the moment. 

The asymptotic solution may be obtained for a small relative thickness of the layer X 

which has the necessary singularities at the above-mentioned points. A more accurate 

solution can be given in the form 

(3.13) 

where q1 (y) is given by (3.11) together with the corresponding formula obtained from (3.5), 

and q1 (y) is 

Q2 fu) = $ O3 f f(r) K” (“h=-“j dq 
--co 

or, taking into account the approximation (2.15) 

(3.14) 

* Analysis of the case F (a, y) = F (a) f G (a, y) is utilized here. 
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It may be shown that qn (y) has logarithmic and removable sing&Sties at appropriate 

points, and also tends rapidly to the degenerate solution of the form (3.12) on departure 

from these points. 

Let us note that in the case of plane problems (f (2, y) s f (r/)), the limits of 

applicability of the asymptotic solutions for small X obtained in the manner described 

above, may be broadened by application of the following method of correction. 

Let q. {yf be the asymptotic solution of the plane problem for a flat stamp, which 

may be determined from (3.8). Evidently, the expression P (IfI = QO Q/l x (W is aIs0 

an asymptotic solution of the same problem if X (h) 4 1 as h -)I 0, i.e. for Anal1 X it 

asymptotically satisfies the integral equation 

(3.16) 

for all values 1 y 1 < a , which are obtained from (1.29) for the plane problem case. In 

particular, for y = 0 we obtain the following expression for the correction factor x (A) 

from (3.16) : 

(3.171 

The integral (3.17) may be tabulated in terms of the parameter x on an electronic 

computer. Celcalations have shown that the more exact solution q* (y) has wider limits 

of applicability, namely, it may be used with sufficient accuracy over the range 0 < h < 2. 

Let us present some results of the calculations. Putting F (cY.) = 8 (a) in (3.8) and 
choosing up (a, y) E ya, we obtain the expression for qO (y) as 

(3.18) 

Let us also give an expression foor 

with (3.18) 

the force P obtained by means of (1.22) together 

Presented in the table are the computed values of the correction factor x (A), ob- 

tained by mesns of (3.17) and (3.18) , as well as the values of the stresses q,, (y) and 
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q* (y) and their corresponding, (practically exact) values of the stresses taken from [4]. 

The last two columns give the values of o = lim q (y)l/o’ - Y2 for y + (I and of the 

force P. 

x/a 
A x 

0 1 0.4 1 0.6 ( 0.8 

ago 
x 
aq * 
x 
as 

?I 

1.00 
0.93 
0.87 

3.95 3.97 4.02 
2.05 2.09 2.18 
1.14 1.19 1.28 

3.95 3.97 4.02 
1.90 1.94 2.02 
0.99 1.04 1.12 

3.97 3.94 3.90 
1.92 1.93 1.99 
0.97 1.01 1.10 

4.27 
2.43 
1.54 

4.27 
2.30 
1.35 

4.60 
2.24 
1.38 

- 

I 
L 

0.95 

5.89 

;::; 

5.89 
3.65 
2.33 

5.74 
3.80 
2.56 

- 

I - 
- o/x I P:Xa 

1.59 8.91 
1.13 5.03 
0.80 3.05 

1.59 8.91 
1.05 4.67 
0.70 2.66 

1.58 8.71 
1.12 4.70 
0.79 2.75 

Having constructed the more accurate solution of the problem q* (y) for a flat stamp, 

by means of the Krein [6] formula, we can determine the corresponding solution of the 

problem for any shape of the stamp. The approximate solutions thus found, together with 

the corresponding approximate solutions [2 and 71 of the method of large h, cover the whole 

range of 4ariation of the parameter h E (0, 00 with an accuracy sufficient for practical ) 
utilization. 

In conclusion, let us consider a specific example ! (2, ?-/)-I Y 1 (plane problem). By 

means of (3.11). we obtain without difficulty, the asymptotic solution for small h in the 

form 

*(Y,=~{~erf(D=-h’y’)‘:,+[(l/K_-)+~~+(~_~)~]x 

r ( a-IYI exp -D- 
h 11 

(3.20) 

We obtain the expression for the force by means of (1.22) and (1.35) 

+ (f + _g $) ;2&-D;h) (3.21) 

(3.22) 

Now, by (3.5) we easily find the asymptotic solution of the problem for the case 

g(x, y)zsign y as 
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D a-lyl”h+ 
- 

Y 1 ( na-lYl 
- ) ( -‘/~enp _-D a-lYl 

Ah _ h )I (3.23) 

The expression for the moment defined by (1.34) has the form (3.22). and the express- 

ion defined by (1.35) is representable as 

Both the formulas for the force (3.21) and (3.22) and th e moment (3.22) and (3.241, are 

asymptotically equal 

h = ‘I* ‘I* ‘I$ 

2.33 4.34 

2.22 4.21 

2.21 4.21 

. . 
and yteld III the range 0 < b < r/a results given above, which practically coincide. 

Let us note that the obtained results are completely applicable to the analogons 

contact problem for a layer when its lower boundary is connected rigidly to a nondeformable 

base. In this case, only the values of A and D in the approximation (2.15) will change. 

4. Formulatiw of the contact problem for an elastic layer (case of a stamp of circular 

cross-section). Let IIS now consider the problem of the effect of a circular stamp on an 

elastic layer of slight thickness. 

Let us represent the function f (r, cp), defining the settling of points of the surface 

of the elastic layer under the stamp, as 

f (r, $4 = f+ (r, 0) + f_ (r, 0 (4.1) 

Here f+ (r, Cp) and f_ (r, Cp) are. respectively, the function even and odd in ‘p. 

Below we shall consider only the even case, assuming that the odd case is obtained 

analogously. Hence, in the following, we shall omit the + sign on the function f+ (r, rp) 

We wish to determine the contact pressure under a stamp 

(O< r Q 0: (4.2) 

the connection between the stress resultants acting on the stamp, and the degree of 

penetration of the stamp into the layer. 

Assuming that the function f (r, cp) admits of a Fourier-Bessel series expansion 

of the form 

(4.3) 
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let us seek the solution of the system of Lamd equations in cylindrical coordinates with 

boundary conditions of the considered problem as 

v (r, cp, 2) = j$ 21,(r, 2) sinncp 
n=o 

w (r, 

Then, for the determination of 

-&g%-@wn= 0 

n=o 

cp, 2) = $j wn(r, z) cos ncp 
n=o 

WI, %I, and wn we shall have 

(4.4) 

1 ae,+au,_~_-_@l 
1-22~ ar 

+Avn-$--_uun= 0 

( where v is the Poisson coefficient). 

The corresponding boundary conditions take the following form: 

awn -3r+T% 07~ = 0 (a<r<m), WI= --71(r) (Odrga) 

npn z=o (4.6) 

au, -f &+= 0 (O<<<<), Jgq a3 =o (O<r<ce) 

U&=0 (O<r<m), %a, Vn, Wn + 0 (r-+00) 

Assuming that the functions jn (r) satisfy, over the range 0 < r < a the pro- 

perties (1) to (3) mentioned in section 1, let us change the variables in equations (4.5) 

and the boundary conditions (4.6) 

where 

(4.7) 

w (r) = 
fn (a) - f, (4 
In (a) (a - r) (0 d r <a), 0 (r) 

Here fz (r) is an arbitrary, strictly monotone 

function fn (r) into the domain a < r < 00. 

= fn*‘(a)(a_r) (aGr<=00) (4*8) 

function, smoothly continning the 

The reverse change for small X has the form F =a - hq + . * . , z = - h& 

f, (4 - f,* W 

After the change of variables (4.7) in the above-mentioned equations and boundary condi- 

tions, we neglect the terms of order h and h* in the obtained relationships, and pot 
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h-f E x, to obtain the following system of differential equations and boundary condi- 

tions 

D%,* = 0 
i 
IP=-&+-$) 

(1 - 2v) 0211,* + en*’ = 0 

(1 - 2x7) D%u~* + t&*’ = 0 ( ‘* - aq 
- %a* f “;L* ) 

for <=- 1 

UN *’ zzz 0 (--cQ<s<@J), UnL *< $ wn*l*I = 0 (-oo<<<w) 

(1 - 29 24w *'J-ye* =o (-oo<<'i<o), / 

w,* = -(bm -i- QlI (O<q<@J) 

for [- 0 

(4.9) 

(4.10) 

v*~*‘=o ( -00<<<03”), l&r;* + wan* = 0 (-oo<q<oo) 

219% *co (- -J<q<=Jh un I * vn*, wn*30 h-+--d 

Here 

&I = fn (a), bn1 = - hfn’ (a) (4.11) 

We see that similarIy to section 1, the original problem has split into two probIems. 

The first is determined by the first equation of (4.9) and the first and fifth boundary condi- 

tions of (4.10), and its solution is identically eqnal to gero ; the second problem, defined 

by the second and third equations of (4.9) and the remaining boundary conditions of (4.10). 

is the plane contact problem on the effect of a semi-infinite, plane, inclined stamp, on an 

elastic strip of unit thickness. The last problem redaces [2] to the solution of the integral 

eqnation 
co 

ii 
qn* (z) K (z - q) dz = 3xX (&I + &A) (Odrl<=) (4.12) 

0 

where K (z - q) and X are given by formalas (1.14). 

Having solved the integral equation (4.12), we can find the solution of the original 

problem 4 (r, CJI) from the formula 

!? (r, 9p) = $ qn (r) COS ncp = * ; q** (q) cos ncp (4. X3) 
n=o n=O 

The connecrion between the stresses acting.on the stamp and its displacement is 

determined by the formulas 

P = 2n [qo(r)rdr, M,,= a’& (r)F’dF (4.14) 
0 0 
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The solution of the problem which vanishes at I = a for the fixed a does evidently 

OCCIII under the condition 

00 

lim ‘I/a2 -r’ 2 (m (r) COS?Kp = 0 (4.15) 
r-ra n=0 

which imposes specific constraints on the function f (r, 9). 

Let us note that the force P and the moment My can also be determined by means of 

the relationships [8] 

n a 

p = 24Po(r)jo(P)rdP, M, = JC i PI (I”) fl P’) rd (4.16) 
0 0 

where p. (r) and cos ‘ppl (r) are, respectively, the solutions for the cases f (r, 9) E 1 

(flat stamp), and f (r, ‘0) = r cos cp (inclined stamp). 

5. home represeatatlons of the solution of not axially symmetric contact problems 

for a stamp of circular cross-section. We shall show that the solution of the contact 

problem for a circular stamp with an arbitrary base ffr, cp) can always be represented as 

a combination of the solutions of axisymmetric probiems of definite smoothness on the 

contour r = a, each of which is acted upon by some differential operator. 

In fact, by aseuming the possibility of expanding the function f (r, 9) into a Fourier- 

Bessel series of the form (4.31, and by using known trigonometric formulas, one may come 

to the conclusion that the method of obtaining a solution for the particular case 

f (r, cp) = Y, (r) COP cp (5.1) 

is sufficient for solution of the general problem. 

Let as show that the function y, (r) CO? 'p may always be represented as 

Y,(r) CO@ Cp = i fDkik) (r) 

Let us differentiate the arbitrary function ID, (r) n times with respect to x to 

obtain 

R 

(Dz (r) = 2 D, (CD,) cos”cp 
i 

(Dn=rn(+ $)“) 

k=1 

Here Dk is some differential operator with respect to r and of order k. 

For k = n it is shown above in parentheses. 

(5.2) 

(5.3) 

The equality (5.3) may be rewritten as 
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n-1 

(5.4) 

Let us take the function CD, (r) in the form 

uh(r) = Pi1 (Y,) (5.5) 

Here the operator r>:, is evidently an integral one and determines the function 

@n (r) with the accuracy of up to the (n - l)-th order polynomial. 

Then (5.4) may be rewritten as 

n-i 
Y, fr) eosu tp = @r$(“) (r) - x jD, [on- (Y,)l cosktp (5.6) 

k=1 

Utilizing the relationship (5.6). which is valid for any n, and using the notation 

‘y,_, (r) = P,, f&-l VJI (5.7) 

we obtain 

n-3 
Yn (r) cosn cp = 0% (I) + Q)$!$ (r) - 2 Dk [D,-l (Y,) + D,_,-1 (Yn_,)l cOsb (5.8) 

k=l 

where the function Q,_, (r) is determined by (2.5) to the accuracy of up to the (n -2)~th 

order polynomial. Continuing this process further, we arrive at (5.2). 

Having determined all the functions @E (r) (k = 1, 2, . . ., n) with the accuracy of up 

to the (k - l)-th order polynomiais, we then find the solution qk(r) of the axisymmetric 

contact problems for stamps with bases of the form 

f (r’, VP) = @, (r) (5.9) 

Afterwards, the coefficients of the arbitrary polynomials are determined from the 

following linear algebraic systems 

r_!__qk(r) eo lim (If;* ; . ’ * 7 k--l) 
- , ,...,n 

(5.10) 

Let us now show that the solution of the problem corresponding to the case (5.1) may 

be written as 

B (r, (PI = jj qi: (r) 
k==o 

(5.11) 

Indeed, differentiating k times with respect to x the identical equality (see (1.23) for 

comparison) 

SS qk (P) Y (R / h) da& = 2nh@, (r) ra=fi+ y2 
(5.12) 

s’+t*<as 
pa = s2 + t2 
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and integrating the left hand side by parts k times, we obtain 

(5.13) 

The terms outside the integral disappeared, aa a result of (5.10). 

The equalities (5.13) and (5.21 confirm the validity of (5.11). 

If the parameter h is small, the algorithm given above which is valid for all &(O, oo), 

is greatly simplified. Namely, it follows from the results of section 4 that the solution of 

the problem in the case (5.1) may be written as Q (r,cp) = qn (r) cos*cp, where qn (r) is 

the solution of the axisymmetric problem for the case f (7, cp) = II,, (r). 

6. Solution ol the considered contact problem (circle) As shown in section 4, the 

solution of the considered contact problem reduces to the determination of the function 

qn* (7) from the Wiener-Hopf integral equation (4.12). A soIution of this integral equation 

suitable for the following is given in section 2. 

Using (2.21) together with (4.71, (4.8), (4.11) and (4.13). we obtain the asymptotic 

solution of the problem for small x 

f,o‘) i 

(6.1) 

cos ncp 

Formula (6.1) is entirely analogous to (3.1). On the basis of (6.1) the solution of the 

considered problem, also analogous to (3.2) and (3.3). which vanishes for r = a may be 

obtained. If the functions fu(r), or some of them, are not strictly monotone in 0 < r < a, 

then it is again necessary to repeat all the considerations which are presented for this 

case in section 1. 

Let us note that (6.1) and other formulas based on, if may, as well as the formulas of 

section 3 be used confidently, at least in the range 

O<h=h/afl/, 

The case of the axisymmetric problem which plays a large part, as was shown in 
in section 5, is obtained under the conditions f,, (p) f 0 (n = 1, 2, . . .). For this case 

we can in the manner analogous to that in section 3 for the case of the plane problem, 

construct additional boundary layers at the angular points of the functions f,,, (r) which, 

in combination with the fundamental solution of the problem (6.11, afford a possibility 

of obtaining the requisite singularities at these points. 

On the basis of (6.1) we shall obtain the asymptotic solution for small x of the 

considered contact problem for the case f (r) ES 1 (plane stamp) as 
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where q~ (r) is an arbitrary func.tion, strictly monotone in 0 < r < a which also satisfies 

other properties mentioned in section 1. 

The limits of applicability of (6.2) may be extended to A= 2 by the insertion of a 

correction factor just as it was done in section 3. After this, more accurate solutions for 

any non-plane stamp may in the case of axial symmetry, be determined by means of Krein 

[6] formula, which in combination with the corresponding solutions of the method of large 

X[3 and 8 to 101 will cover the whole range of variation of the parameter IE (0, w) 
with sufficient accuracy. Taking into account the formulas given in section 5, which con- 

nect the non-axisymmetric and the axisymmetric contact problems for a circular stamp, 

we can conclude that the whole range of variation of A can be covered by simple formulas 

for the effect of a circular stamp with an arbitrary base, with accuracy sufficient for 

practical utilization. 

Let us now present some specific examples. 

Let us consider the case of a parabolic stamp f (P, up) z rr. Utilizing (6.1) we ob- 

tain the solution of the problem in the form 

~(I,=~{$ed[~(i-~)1%+[(llji-~)+~~+ 

+(_A&!) i]_L[L(i-~)~exp [-g (i-f)]} (6*3) 

The expression for the force obtained by means of (4.14) is 

P = ;s 11 + (2 1/m - 1) 2p+ + (4AD - 2 Jfa - I) p-O] erf 

_ 2 (f _ p2) e=p (- W) 
+ (6.4) 

p1/G } (p=E)I!.) 

In the case of a conical stamp (f (r, t#) E r) we find by (6.1) 

The corresponding value of the force obtained by using (4.14) is given by 

p = 2%taa -{[++(vm-+)P-2+ ( AD - ‘t/AU + $ + + va) p-4 + (6’6) 

+ (; I~J’+; ~~--~AD--~p-6],rIp+[~+ (1/Z? -+2 vQp-9-+ 

Now, let us consider the case of the penetration of a flat inclined stamp f (r, 9) = 

= r coscp. 

The asymptotic solution of this problem for small h may be obtained in two ways. 
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Firstly, we may use (4.13) and write the solution in form of (6.5) multiplied by cos cp. 

Secondly, the so!ntion of this problem is obtained if the solution for a stamp with 

the base 

f (r, cp) = r2 + c 
(6.7) 

determined from (6.1) is differentiated with respect to x. Here c is selected by the method 

given in section 5 from the condition of the solution for (6.7) vanishing at r = a. 

Performing all the mentioned operations we obtain 

-vp 
cxP 

D 

2h 

The expressions for the moments are evaluated by means of (4.14) for both versions 

of the solution and are, respectively 

AXd 
*li=Ah {[$+ (v=Qp-+ ($+ AD-; 1/m)p-a+ (a v/AD- 

-~D-f)~-‘+(~~~-~~~-~jp-“]erfp+[~+(l/;ii5- &-if 

+ (g + AD - T/m) P-4 $- (2 - + AD + + 1/m) P-e] E;F} (6.9) 

M, = ‘$ [I + (2 v/AD - 1) 2P-? + (3 - 4 1/AD) P-y erf -& + 
‘r/2 

+2[1-(3-4~AD)P-2] 
(6.10 

Values of the quantity M* s *&s, computed for comparison by (6.9) and (6.10) 

are shown on the right 

We see from the numerical values shown, that the 

equivalent for small A. 

M1: z ;&4 ;{; 4!{; (6.9) 
M* z 13.90 7.67 4.57 (6.10) 

formulas for My are asymptotically 

In conclusion, let us note that the results obtained here are completely applicable 

to the analogous contact problem for a layer when its lower boundary is connected rigidly 

to an nondeformable base. In the latter case only the values of the constants A and D in 

the approximation (2.17) change. 

The anthom are gratefal to 1.1. Vorovich for a number of valuable comments. 
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TABLE 

x 

1.00 
0.93 
0.87 

2. 

- 

:,‘a = I 

_- 

3.95 
2.05 
1.14 

3.95 
1.90 
0.99 

3.97 
2.92 
0.97 

3 

- 

0.4 

3.97 
2.09 
1.19 

3.95 
1.94 
1.04 

3.94 
1.93 
1.01 

0.6 
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%.I8 
1.28 

4.02 
2.02 
1.12 

3.90 
1.99 
1.10 

- 

- 
0.8 
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